86 research outputs found

    Lipid apheresis techniques: current status in Germany

    Get PDF
    For long-term lipid apheresis therapy, several different technical systems have been developed which enable effective reduction of LDL cholesterol and other atherogenic lipoproteins, such as Lp(a), with sufficient selectivity and good clinical tolerance. Suitable techniques include whole blood adsorption with polyacrylamide and dextran sulfate cellulose, while primary plasma separation is used for cascade filtration, heparin-induced precipitation, immunoadsorption, silicate gel adsorption, and dextran sulfate cellulose (both techniques)

    The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management.

    Get PDF
    Plasma triglyceride concentration is a biomarker for circulating triglyceride-rich lipoproteins and their metabolic remnants. Common mild-to-moderate hypertriglyceridaemia is typically multigenic, and results from the cumulative burden of common and rare variants in more than 30 genes, as quantified by genetic risk scores. Rare autosomal recessive monogenic hypertriglyceridaemia can result from large-effect mutations in six different genes. Hypertriglyceridaemia is exacerbated by non-genetic factors. On the basis of recent genetic data, we redefine the disorder into two states: severe (triglyceride concentration >10 mmol/L), which is more likely to have a monogenic cause; and mild-to-moderate (triglyceride concentration 2-10 mmol/L). Because of clustering of susceptibility alleles and secondary factors in families, biochemical screening and counselling for family members is essential, but routine genetic testing is not warranted. Treatment includes management of lifestyle and secondary factors, and pharmacotherapy. In severe hypertriglyceridaemia, intervention is indicated because of pancreatitis risk; in mild-to-moderate hypertriglyceridaemia, intervention can be indicated to prevent cardiovascular disease, dependent on triglyceride concentration, concomitant lipoprotein disturbances, and overall cardiovascular risk

    Perturbation of lipids and glucose metabolism associated with previous 2,4-D exposure: a cross-sectional study of NHANES III data, 1988-1994

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Results from previous population studies showed that mortality rates from acute myocardial infarction and type-2 diabetes during the 1980s and 1990s in rural, agricultural counties of Minnesota, Montana, North and South Dakota, were higher in counties with a higher level of spring wheat farming than in counties with lower levels of this crop. Spring wheat, one of the major field crops in these four states, was treated for 85% or more of its acreage with chlorophenoxy herbicides. In the current study NHANES III data were reviewed for associations of 2,4-dichlorophenoxy acetic acid (2,4-D) exposure, one of the most frequently used chlorophenoxy herbicides, with risk factors that are linked to the pathogenesis of acute myocardial infarction and type-2 diabetes, such as dyslipidemia and impaired glucose metabolism.</p> <p>Methods</p> <p>To investigate the toxicity pattern of chlorophenoxy herbicides, effects of a previous 2,4-D exposure were assessed by comparing levels of lipids, glucose metabolism, and thyroid stimulating hormone in healthy adult NHANES III subjects with urinary 2,4-D above and below the level of detection, using linear regression analysis. The analyses were conducted for all available subjects and for two susceptible subpopulations characterized by high glycosylated hemoglobin (upper 50<sup>th </sup>percentile) and low thyroxine (lower 50<sup>th </sup>percentile).</p> <p>Results</p> <p>Presence of urinary 2,4-D was associated with a decrease of HDL levels: 8.6% in the unadjusted data (p-value = 0.006), 4.8% in the adjusted data (p-value = 0.08), and 9% in the adjusted data for the susceptible subpopulation with low thyroxine (p-value = 0.02). An effect modification of the inverse triglycerides-HDL relation was observed in association with 2,4-D. Among subjects with low HDL, urinary 2,4-D was associated with increased levels of triglycerides, insulin, C-peptide, and thyroid stimulating hormone, especially in the susceptible subpopulations. In contrast, subjects with high HDL did not experience adverse 2,4-D associated effects.</p> <p>Conclusions</p> <p>The results indicate that exposure to 2,4-D was associated with changes in biomarkers that, based on the published literature, have been linked to risk factors for acute myocardial infarction and type-2 diabetes.</p

    Low Lipoprotein(a) Concentration Is Associated with Cancer and All-Cause Deaths: A Population-Based Cohort Study (The JMS Cohort Study)

    Get PDF
    Background: Experimental studies support the anti-neoplastic effect of apo(a), but several clinical studies have reported contradictory results. The purpose of this study was to determine whether a low lipoprotein(a) [Lp(a)] concentration is related to mortality from major causes of death, especially cancer. Methods The subjects were 10,413 participants (4,005 men and 6,408 women) from a multi-center population-based cohort study in Japan (The Jichi Medical School cohort study). The average age at registration was 55.0 years, and the median observation period was 4,559 days. As the estimated hazard ratio was high for both the low and very high Lp(a) levels, we defined two Lp(a) groups: a low Lp(a) group [Lp(a)<80 mg/L] and an intermediate-to-high Lp(a) group [Lp(a)≥80]. Participants who died from malignant neoplasms (n = 316), cardiovascular disease (202), or other causes (312) during the observation period were examined. Results: Cumulative incidence plots showed higher cumulative death rates for the low Lp(a) group than for the intermediate-to-high Lp(a) group for all-cause, cancer, and miscellaneous-cause deaths (p<0.001, p = 0.03, and p = 0.03, respectively). Cox proportional hazards analyses with the sex and age of the participants, body mass index, and smoking and drinking histories as covariates showed that a low Lp(a) level was a significant risk for all-cause, cancer, and miscellaneous-cause deaths (p<0.001, p = 0.003, and p = 0.01, respectively). The hazard ratio (95% CI) [1.48, 1.15–1.92] of a low Lp(a) level for cancer deaths was almost the same as that for a male sex (1.46, 1.00–2.13). Conclusions: This is the first report to describe the association between a low Lp(a) level and all-cause or cancer death, supporting the anti-neoplastic effect of Lp(a). Further epidemiological studies are needed to confirm the present results

    Computational Lipidology: Predicting Lipoprotein Density Profiles in Human Blood Plasma

    Get PDF
    Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond “bad” and “good” cholesterol are needed to precisely predict individual lipid disorders. Our work contributes to this aim by bringing together experiment and theory. We developed a novel computer-based model of the human plasma lipoprotein metabolism in order to simulate the blood lipid levels in high resolution. Instead of focusing on a few conventionally used predefined lipoprotein density classes (LDL, HDL), we consider the entire protein and lipid composition spectrum of individual lipoprotein complexes. Subsequently, their distribution over density (which equals the lipoprotein profile) is calculated. As our main results, we (i) successfully reproduced clinically measured lipoprotein profiles of healthy subjects; (ii) assigned lipoproteins to narrow density classes, named high-resolution density sub-fractions (hrDS), revealing heterogeneous lipoprotein distributions within the major lipoprotein classes; and (iii) present model-based predictions of changes in the lipoprotein distribution elicited by disorders in underlying molecular processes. In its present state, the model offers a platform for many future applications aimed at understanding the reasons for inter-individual variability, identifying new sub-fractions of potential clinical relevance and a patient-oriented diagnosis of the potential molecular causes for individual dyslipidemia

    Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology

    Get PDF
    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a “middle-out” strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from “-omics” signatures are identified as key elements of a successful systems biology modeling approach in nutrition research—one that integrates physiological mechanisms and data at multiple space and time scales
    corecore